Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli.

نویسندگان

  • M L Andermann
  • C I Moore
چکیده

The representation of high-frequency sensory information is a crucial problem faced by the nervous system. Rodent facial vibrissae constitute a high-resolution sensory system, capable of discriminating and detecting subtle changes in tactual input. During active sensing, the mechanical properties of vibrissae may play a key role in filtering sensory information and translating it into neural activity. Previous studies have shown that rat vibrissae resonate, conferring frequency specificity to trigeminal ganglion (NV) and primary somatosensory cortex (SI) neurons during suprathreshold sensory stimulation. In addition to frequency specificity, a further potential impact of vibrissa resonance is enhancement of sensitivity to near-threshold stimuli through signal amplification. To examine the effect of resonance on peri-threshold inputs (<or=80 microm at the vibrissa tip), we recorded NV and SI neurons during stimulation at multiple amplitudes and frequencies, and generated minimal amplitude tuning curves. Several novel findings emerged from this study. First, vibrissa resonance significantly lowered the threshold for evoked neural activity, in many cases by an order of magnitude compared to stimuli presented at off-resonance frequencies. When stimulated at the fundamental resonance frequency, motions as small as 8 microm at the vibrissa tip, corresponding to angular deflections of less than 0.2 degrees, drove neural firing in the periphery and cortex. Second, a closer match between vibrissal and neural frequency tuning was found for lower amplitude motions. Third, simultaneous paired recordings demonstrated that the minimal amplitude of resonant vibrissa stimulation required to evoke responses in SI increased significantly for recordings outside the primary vibrissa barrel column, providing additional evidence for somatotopically localized frequency columns. These data demonstrate that resonant amplification can increase the sensitivity of the vibrissa sensory system to an ecologically relevant range of low-amplitude, high-frequency stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Vibrissa Resonance Hypothesis

Acknowledgements The authors would like to acknowledge Maria Neimark and Dr. Jason Ritt for collaboration on development of many of the ideas presented here, and Cheryl Cheney for assistance in preparation of the manuscript. Overview The vibrissa sensory system has recently emerged as a predominant model for investigation of mammalian sensory processing. The anatomical markers of representation...

متن کامل

Vibrissa resonance as a transduction mechanism for tactile encoding.

We present evidence that resonance properties of rat vibrissae differentially amplify high-frequency and complex tactile signals. Consistent with a model of vibrissa mechanics, optical measurements of vibrissae revealed that their first mechanical resonance frequencies systematically varied from low (60-100 Hz) in longer, posterior vibrissae to high ( approximately 750 Hz) in shorter, anterior ...

متن کامل

Neural Correlates of Vibrissa Resonance Band-Pass and Somatotopic Representation of High-Frequency Stimuli

The array of vibrissae on a rat's face is the first stage of a high-resolution tactile sensing system. Recently, it was discovered that vibrissae (whiskers) resonate when stimulated at specific frequencies, generating several-fold increases in motion amplitude. We investigated the neural correlates of vibrissa resonance in trigeminal ganglion and primary somatosensory cortex (SI) neurons (regul...

متن کامل

بررسی دقت تخمین آستانه شنوایی بهنجار بوسیله پاسخ‌های برانگیخته قشر شنوایی

Background: Cortical Evoked Response Audiometry (CERA) refers to prediction of behavioral pure-tone thresholds (500-4000 Hz) obtained by recording the N1-P2 complex of auditory long latency responses. CERA is the preferred method for frequency–specific estimation of audiogram in conscious adults and older children. CERA has an increased accuracy of determination of the hearing thresholds of ale...

متن کامل

A Review on Experimental Assessments of Pain Threshold in Healthy Human Subjects

A B S T R A C T There are three types of nerve fibers that are involved in the transmission of pain stimuli: C fibers (slower fibers) for thermal, mechanical and chemical stimuli, A-delta fibers for thermal or mechanical stimuli and A-beta fibers for touch stimuli. Clinically, this is crucial in making an accurate assessment of the pain level experienced by a suffering patient, in indicating th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1235  شماره 

صفحات  -

تاریخ انتشار 2008